

Comparing approaches for Enterprise Architects

There are at least 21 different approaches to modeling a complex evolving object, such as a business. These range from brain storming to more structured and formalized approaches.

The following table provides a quick reference guide to the approaches an enterprise architect can use to assist business operatives describe the business under the 3 sub phases of information architecture:

Method	Information architecture															
	Conceptual architecture					Logical o	ture	Physical architecture								
Bachman	*						Entities & associations *DFDs			Application generator						
*Bal sc	Objectiv	Strategies			Data											
*BPR 1	Vision and Objectives Baselines					*	Prototype									
*BPR 2	Ontology Information			F	unct	ion	Data			*						
*BPR 3	Plan			Analyse			Design			Implem	ent	E۱	/aluate			
*BPR 4	Plan			Analyse			*			Plan		E۱	/aluate			
*BPR 5	Business	modeling		System	desi	gn	•			Implem	entatio	n				
*Br storm	7 rules					*		*								
CoPR	Transce	Transcendental doctrine of method					Transcendental		Transc. doctrine of elements							
FEAF	Enterpri	Enterprise architecture					Segment architecture			Solution architecture						
Geram	Identifi	Identification Cor		oncept Requi		rement	Design Imple		lementation	Build Oper		ate	Change			
ΙE	Plan	Plan Anal			ılyse			Design			Construct					
*KM	*Story t	*Story telling - sharing ideas					Expert systems			Knowledge repositories						
Macroscope	Strategy	у	En	Enterprise architecture			Enterprise value management			Busn transformation & change						
NISTEA	Business		In	Information			Data	Applica	cations Technical infrastruct			ture				
PEAF	Foundati	ion	Ma	Management			MetaModel Governance			Communication						
Ripose	Strategi	ic planning o	architecti	ure			Logical architecture			Solutions architecture						
·		Grammatical architecture						Applications		Prototype		Production				
	Objectiv	/es	Knowled	dge	ar	chitecture	architecture	arch	itecture		•					
TOGAF	*F&p	*Arch vision	*Busn arch	1 *O&	S	*Acm	Information sys	nformation systems		*Tech arch		*Migr plan	*I g			
T&Q	Trivium	•					•	1					Quadrivium			
•	Rhetoric	:	Grami	mar			Logic		-							
UML	Foundati	ion								Behavio	ur					
	Core		Au	Auxiliary			Data types			1						
Zachman	Context	ual	Со	nceptual			Logical			*Phys *A b			*Fe			

How does one make up their mind as to which approach to use? Here are a few benefits you should look for in relation to the approach, namely the approaches:

- Effectiveness capability; economic viability; unique features
- Efficiency speed of deliver; how practical it is to apply; how streamlined it is
- Ethics equitability; honesty; transparency
- Ease of use fluency; simplicity; intuitive

- Common wealth
- Common wellbeing
- Common good
- Common sense

*Notes:

- If we have missed an approach and you would like us to analyse it for comparison's sake, please email us at info@ripose.com
- Each phase may have multiple sub phases. Examine the method in detail for more information. We have fact sheets on most of these approaches comparing them to our baseline, namely the Ripose Technique
- The grey area suggests no deliverable or phase could be identified
- Hyperlinks may or may not work some approaches may have been removed
- Bal sc Balanced scorecard
- There are about 5 different BPR (business process re-engineering) approaches
 - 1) Davenport & Short
 - 2) KBSI Knowledge Based Systems, Inc
 - 3) ProSci A BPR education series
 - 4) ECOPI Electronic College of process innovation
 - 5) Proforma
- Br storm Brain storming
- DFD data flow diagram
- KM Knowledge management
- TOGAF architectures F&p = Framework & principles; Arch vision = Architecture vision; Busn arch = Business architecture
 O&s = Opportunities & solutions; Acm = Architecture change management; Tech arch = Technology architecture;
 Migr plan = Migration planning; I g = Implementation governance
- Zachman scopes Phys = Physical; A b = As built; F e = Functioning enterprise

A history of methodologies, frameworks and techniques

The following table shows a time line outlining the development of the approach:

Table 1: Developer by era

Era	Charlemagne	I Kant	Bachman	PpoO	Dijkstra	MA Jackson	Drucker	Yourdon	Richter	Porter	Finklestein	Martin	Zachman	Fujitsu	ВРР	Geram	Kaplan	NISTEA	TOGAF	NML
782	TåQ																			
1755		CoPR																		
1960s & 1970s			RDM	3NF	SP	JSD	BSP	SADT	JSD 3NF											
1980s									IA IE	BSP	IE	IE	ZF	P+						
1990s									Ripose		ZF			Macroscope	ВРР	Geram	BS	Nist EA	TOGAF	NWL

Table 2: Developer, method and description

Developer	Method	Description	Era
Bachman C	RDM	Role data model	Early 1970s
BPR	BPR	Business process re-engineering	1990s
Charlemagne	T&Q	Trivium and quadrivium	782
Codd E	3NF	Third normal form - normalisation	Late 1960s
Dijkstra E	SP	Structured programming	Early 1970s
Drucker P	BSP	Business strategic planning	Early 1970s
Finklestein C	IE	Information Engineering	Early 1980s
Fujitsu	Macroscope	Based on DMR's S+ P+ A+ B+	1987
Geram	Geram	Generalised Enterprise Reference Architecture and Methodology	1990
Jackson M A	JSD	Jackson system development	1974
Kant I	CoPR	Critique of pure reason	1755
Kaplan R	BS	Balanced scorecard	1992
Martin J	IE	Information Engineering	Early 1980s
NIST	NISTEA	National Institute of Standards and Technology	1990
Porter M	BSP	Business strategic planning	1980
Richter C	3NF	Learnt how to normalise	1975
	JSD	Learnt how to structure a program from data	1977
	SADT	Studied SADT	1978
	IE	Information Engineering	1982
	IA	Information architecture	1989
	Ripose	Ripose	1990
TOGAF	TOGAF	The open group architecture framework	1995
UML	UML	Unified modelling language	1994
Yourdon E	SADT	Structured Analysis and Design Technique	1975
Zachman J	ZF	Zachman framework	1982

The information architect

The following table shows the sub classifications of an information architect and the skills an information architect needs to be a virtuoso in:

Information architect												
	Conceptual /	′	L	ogical archited	c†	Physical /solutions architecture						
enterp	enterprise/business architect			chitect	Application	Data	Programmer	Test architect				
Business analyst	Knowledge architect	Systems architect	Data modeler	Data base designer	architect	base admin		Systems tester	Deployment tester			

The stakeholders, skills, inputs, processes and outputs are as follows:

Stakeholder	Skill	Input	Process	Output	
Strategic mgt	Business analyst	Existing organisation chart	Refinement	Refined organisation chart	
	·	Generic business statements	Facilitated sessions	Business objectives	
Tactical mgt	Knowledge architect	Business objectives	Facilitated sessions	Knowledge model	
Strategic mgt	Systems architect	Knowledge model	Facilitated sessions	Prioritised systems	
				Business plan - proof of concept	
Operational mgt	Data modeler	Prioritised systems	Facilitated sessions	Logical data model	
-		Knowledge model			
None	Data base designer	Logical data model	Rationalisation	Logical data base design	
	_	_		Subject area design	
Operational mgt	Application architect	Subject area design	Rapid application design	Logical applications	
			sessions		
None	Data base admin	Logical data base design	Data base generation	Physical data base	
	Programmer	Physical data base	Program code	Unit tested code	
		Logical applications			
Operational mgt	Systems tester	Unit tested code	Systems testing	Error free code	
				Operating instructions	
	Deployment tester	Error free code	Stress testing	Production systems	
		Target hardware & software			
		platforms			
		Operating instructions		Update operating instructio	

Output content:

Business objectives - Purpose statement; Benefits; Values; Performance indicators

Business plan - Financial budgets, risk analysis, production plan, quality assurance, governance, resource plan, project plan

Logical applications - Screen designs, menus, reports, pseudo code